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Abstnct-This study is an analytical investigation of large amplitude lIcxural vibration of clamped circular
plates with stress-free and immovable cdacs. The effccts of transverse shear deformation and rotatory
inertia are inclu~d in the governing equations. Solutions arc formulated on the basis of Galcrkin's method
and the Runge-Kutta numerical procedure. An excellent agreement is found between the present results
and those reported earlier for nonlinear static and dynamic cases. Numerical results indicate that the elfccts
of transverse shear deformation and rotatory inertia arc significant in the nonlinear dynamic analysis of
circular plates, particularly for moderately thick plates.

I. INTRODUCTION
The large amplitude vibrations of plates have been discussed by a number of investigators[l].
Using Galerkin's method, Yamaki[2] has investigated the nonlinear transverse vibration of
simply supported and clamped isotropic circular plates with stress-free and immovable edges.
Nonlinear oscillations of a rectilinearly orthotropic circular plate with a clamped stress-free
edge have been considered by Nowinski[3]. Axisymmetric nonlinear vibrations of thin circular
plates have been also reported by Bulkelay[4], Srinivasan[S] and Kung and Pao[6]. However,
in all these analyses the effects of the transverse shear deformation and rotatory inertia have
been neglected. Recently, Kanaka Raju and Venkateswara Rao[7] have studied the effects of
geometric nonlinearity, shear deformation and rotatory inertia on axisymmetric vibrations of
circular plates. The finite element method has been used and results have been reported for
simply supported and clamped isotropic circular plates with immovable boundaries. It may be
noticed that the individual effects of either the transverse shear deformation or the rotatory
inertia on the dynamic behavior of circular plates cannot be investigated in the analysis.

This paper is analytically concerned with nonlinear ftexural vibrations of clamped moderately
thick circular isotropic plates with immovable and stress-free edges. The effect of transverse
shear deformation and rotatory inertia is included in this work in such a way that the individual
or the combined effect can be examined. Nonlinear equations of transverse motion of the plate
are expressed in terms of three displacement components. When the effects of transverse shear
and rotatory inertia are neglected, these equations readily reduce to the displacement equations
of the von Karman plate theory. In order to study these effects on the dynamic behavior of
circular plates, a solution for w is assumed in the polyno~ial form to satisfy the out-of-plane
boundary conditions. The two inplane equilibrium equations are then solved exactly in
conjunction with the required inplane boundary conditions. Using these inplane displacements
and the transverse displacement assumed earlier, the equation of transverse motion is satisfied
approximately by use of Galerkin's method. The resulting nonlinear ordinary differential
equation for the time function is numeric&1ly integrated using the fourth-order Runge-Kutta
procedure. Numerical results are presented for different plate parameters. Present results are in
close agreement with existing solutions for all special cases[2, 3, 7].

2. GOVERNING EQUATIONS

The equations of transverse motion of a circular isotropic plate of radius a and thickness h
(Fig. 1) including the effects of transverse shear deformation and rotatory inertia are[8]

1 1 [1] 1U.u +2(1- v)u.11 +2(1 +V)V,.ty = - W,.t W.u +2(1- v)w.11 -2(1 + v)w.Yw,.ty
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Fig. I. Geometry and coordinate system of plate.

I I [I] Iv.yy +2 (1- V)V,.u +2 (1 + V)U,XY = - W,y W,yy +2 (1- V)W,.u - 2(l + V)W...W.xy (2)

(3)

where u, v and ware three displacement components on the midsurface, x and y are the
rectangular cartesian coordinates, a comma denotes the partial differentiation with respect to
the corresponding coordinates and v is the Poisson's ratio and where

1= q(x, y) - phW,l1 + h(N.uw,.u + Nyyw,yy + 2Nxy w.xy )

and the differential operators L1 and Lzare defined as

(4)

(5)

In eqn (4) q is the lateral load per unit area of the plate, p is the mass density of the plate and
Nii are the inplane stress resultants per unit length given by

N,u = C[u.X +~ w~x + v(v,y +~ W~y )]

Nyy =c[V,y +~ W~y + v(U,x +~ w~x)]

I
N xy = 2C(1- V)(U,y + v,x + W,xW.y)

(6)

in which C = Eh/(1- v2) with E being Young's modulus of the plate material. The coefficients
a.-a.4 in eqns (5) are:

al = - b.bz, az = bl- bl
z- bl, a3 = - bi, a4 = b4(b l +bz),

R 1
as = bl+bz, a6 = - 2b4, a7 = - Ii, as = 12(1- v2)' a9 = 2as,

alO = 2a7(b3- bl) +a9b4, all = aSb4- a7bz, alz = a7b4,

( a9) a9bZal3=-asbz, a14= as+T (b3 +bl )--2-



where
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In these coefficients the so-called tracing constants, T. and Ri, are introduced to identify the
terms which characterize the effects of the transverse shear deformation and rotatory inertia,
respectively. If these effects are taken into consideration, then T. =Rj =1. The other three
combinations are T. = I and Rj =0, T. =0 and Rj =I, and T. =Rj =O. The last case leads to the
dynamic von Karman plate equations in three displacements.

The circular plate under consideration is assumed to be clamped along its boundary. The
appropriate boundary conditions are, for a clamped stress-free plate,

W =W.x =W,y =0
xN.... + yNxy =0
yNyy +xNxy = 0

and for a clamped immovable plate

(7)

W = W.x = W. y =U = v =0 along x
2+y2 =a

2
•

Equations (1)-(3) are to be solved in conjunction with the boundary conditions (7) or (8).

(8)

. 3. SOLUTION TO DYNAMIC EQUATIONS

A solution for W is sought in the separable form satisfying the required boundary conditions
in eqns (7) and (8).

(9)

in which F(T) is an unknown function of the nondimensional time T =tV(Elpa2). The two
inplane displacements are chosen in the polynomial form as

F2h2
U=7 [CIX' + C2X'y2+ C3x3y4 + c4Xy6 + a2(c,x' + c6X3y2+ C,xy4) + a4(c8x3 + c9Xy2)

+ clOa6x] (10)

v=~ [cIIY' + CI2Y'X2+ C13y3X4+ CI4YX6+ a2(c15J' + C16y3X2+ CI,YX4)+ a4(c18y3+ CI9YX2)a
+C20a6y]. (11)

These expressions for u and v and expression (9) for W are substituted into eqns (1) and (2). By
comparing the coefficients of like terms, twC?lve algebraic equations are generated in terms of
the coefficients Cj. The additional eight equations required to determine CI-C20 uniquely are now
obtained by substituting eqns (9)-(11) in eqns (7) or (8). In each set of boundary conditions,
eight and only eight algebraic equations are generated. The system of twenty nonhomogeous
linear algebraic equations in coefficients c's are solved to give these coefficients explicitly. They
are not defined here for the sake of brevity. The inplane displacements in eqns (10) and (11) are
an exact solution to the inplane equilibrium eqns (1) and (2) for the assumed W given in eqn (9).

Generally, the deftection in eqn (9) and the inplane displacements in eqns (10) and (11) do not
satisfy the dynamic equation of equilibrium in the transverse direction of the plate. In order to
obtain an approximate solution to the nonlinear eqn (3), the Galerkin method is used here in this
work. This procedure, after a lengthy calculation, yields the following di1ferential equation for
the time function F(T):
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where qo is the intensity of uniformly distributed lateral load and coefficients kj are obtained
following a very lengthy standard mathematical procedure for the stress-free and immovable
cases. Equation (12) includes the effects of transverse shear deformation and rotatory inertia. If
either of these or both are zero, i.e. Ts = I and Rj =0, Ts =0 and Rj = I, and Ts =R =0, then
the time-differential equation reduces to the Duffing-type equation as

(13)

The time-differential eqn (12) is numerically integrated using the Runge-Kutta method whereas
eqn (13) for qo =0 can be solved exactly by the elliptic-integral method [l]. For static
large-deflection problems F is independent of time and, hence, eqn (13) will reduce to a
nonlinear algebraic lead-deflection relation in the large-deflection regime.

4. NUMERICAL RESULTS, DISCUSSION AND CONCLUSION

Numerical results are presented for static and dynamic behavior of an isotropic circular
plate in Figs. 2-6. The value of v is taken to be OJ. The ratio of the nonlinear period T of
vibration, including effects of transverse shear and rotatory inertia, to the corresponding linear
period T of a classical plate, excluding these effects, was computed for different riondimen­
sional amplitudes, radius-to-thickness ratios and boundary conditions. For the purpose of
comparison, numerical results are also presented for the case when the transverse shear and
rotatory inertia effects are not considered. In using the fourth-order Runge-Kutta procedure for
the solution of eqn (12), the nondimensional time interval VT was taken as 0.0001.

When the effects of transverse shear and rotatory inertia are not taken into account, the
present fundamental linear frequencies agree very well with those given in [2,3]. On account of
these effects, a comparison of present results with those of Ref. [7J for a clamped immovable
plate is presented in Table 1. Good agreement is noted.

In the static case when the effect of transverse shear is ignored, the variation of the central
deflection Wo with the lateral uniform pressure qo is shown in Fig. 2 for a circular plate. It is
observed that the present results are in excellent agreement with those of Yamaki [2J and
Nowinski [3J for the immovable and stress-free cases, respectively. In Figs. 3 and 4 the period
ratio TITo is plotted against the nondimensional amplitude of vibration for different radius-to­
thickness ratios of a circular plate. Figure 3 shows the results for the stress-free case whereas
the results in Fig. 4 are for the immovable case. In these figures the effects of transverse shear
and rotatory inertia are included except for the curves for which Ts = Rj =O. For all the
boundary conditions considered here, the period ratio decreases with increasing the amplitude
of vibration, thereby exhibiting the hardening type of nonlinearity. The transverse shear and
rotatory inertia effects increase the period ratio at any amplitude of vibration. When the
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Fig. 2. Load-deflection curves for circular plate under uniformly distributed load.
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Fig. 3. Amplitude-period response curves for stress-free circular plate with different radius-ta-thickness
ratios.

~/h

Fig. 4. Relation between period r'atio and amplitude fOT immovable circular plate with various values of
radius-ta-thickness ratio.

(J/h

Fig. S. Variation of period ratio with radius-ta-thickness ratio for different nondimensional amplitudes.
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Fig. 6. Individual effect of transverse shear and rotatory inertia on amplitude-period response for stress­

free and immovable circular plates.

amplitude increases, the stretching of the plate midsurface increases with a corresponding
decrease in the bending and transverse shear effects. In view of this, the effect of transverse
shear decreases with the amplitude. When the effects of transverse shear and rotatory inertia
are both neglected (T. = Rj = 0), present results are in excellent agreement with those of Refs.
[2,3].

The effect of the radius-to-thickness ratio on the large amplitude vibration of a circular plate
at the amplitude equal to and twice the plate thickness is shown in Fig. 5. The borizontallines
represent the case when the effects of transverse shear and rotatory inertia are neglected. In
this case, the period ratio is independent of the radius-to-thickness ratio. However, these effects
are important for moderately thick plates particularly with stress-free boundary conditions. As
the ratio alh increases, the influences of transverse shear and rotatory inertia decrease. Each
curve, therefore, approaches asymptotically the one for the corresponding classical thin plate.
The individual effect of transverse shear (T. =1, Rj =0) and rotatory inertia (Rj =1. T. =0) on
the nonlinear vibration behavior is shown in Fig. 6. It can be seen that the effect of transverse
shear is more significant than that of rotatory inertia. Consideration of either the transverse
shear effect or the rotatory inertia effect leads to an increase in the period ratio at any
amplitude of vibration.

In conclusion, it is to be restated that in this study the effects of transverse shear and rotatory
inertia are incorporated into the dynamic von Karman nonlinear plate equations in such a
manner that these effects on the dynamic behavior of circular plates can be investigated
individually or totally. These effects decrease with increasing the amplitude of vibration and are
maximum at infinitesimal small amplitudes. The hardening effect is considerably less for a

Table 1. Values of period ratio for clamped immovable circular plate

w alh • 5 alh • 10 alh • 20 Classical Thin
0 Plate

h Present [7} Present [ 7) Present [7] Present [7]

0.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.2 0.9911 0.9921 0.9923 0.9927 0.9925 0.9928 0.9928 0.9928

0.4 0.9669 0.9699 0.9711 0.9718 0.9723 0.9722 0.9724 0.9724

0.6 0.9303 0.9366 0.9390 0.9402 0.9412 0.9410 0.9413 0.9413

0.8 0.8855 0.8965 0.8988 0.9015 0.9024 0.9026 0.9026 0.9029

1.0 0.8369 0.8533 0.8544 0.8591 0.8591 0.8603 0.8597 0.8607
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stress-free edge than for an immovable edge. For circular plates with stress-free boundaries, the
effects of transverse shear and rotatory inertia are of considerable significance even at large
amplitudes of vibration.
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